首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4160篇
  免费   132篇
  国内免费   10篇
化学   2244篇
晶体学   27篇
力学   126篇
数学   470篇
物理学   1435篇
  2022年   37篇
  2021年   64篇
  2020年   76篇
  2019年   75篇
  2018年   86篇
  2017年   60篇
  2016年   112篇
  2015年   80篇
  2014年   104篇
  2013年   265篇
  2012年   227篇
  2011年   263篇
  2010年   162篇
  2009年   150篇
  2008年   211篇
  2007年   208篇
  2006年   217篇
  2005年   183篇
  2004年   127篇
  2003年   115篇
  2002年   101篇
  2001年   73篇
  2000年   70篇
  1999年   43篇
  1998年   40篇
  1997年   38篇
  1996年   42篇
  1995年   49篇
  1994年   45篇
  1993年   55篇
  1992年   45篇
  1991年   34篇
  1990年   50篇
  1989年   41篇
  1988年   38篇
  1987年   38篇
  1986年   29篇
  1985年   44篇
  1984年   38篇
  1983年   39篇
  1982年   36篇
  1981年   37篇
  1980年   38篇
  1979年   32篇
  1978年   37篇
  1977年   33篇
  1976年   38篇
  1975年   33篇
  1974年   34篇
  1973年   37篇
排序方式: 共有4302条查询结果,搜索用时 15 毫秒
21.
Transient states maintained by energy dissipation are an essential feature of dynamic systems where structures and functions are regulated by fluxes of energy and matter through chemical reaction networks. Perfected in biology, chemically fueled dissipative networks incorporating nanoscale components allow the unique properties of nanomaterials to be bestowed with spatiotemporal adaptability and chemical responsiveness. We report the transient dispersion of gold nanoparticles in water, powered by dissipation of a chemical fuel. A dispersed state that is generated under non-equilibrium conditions permits fully reversible solid–liquid or liquid–liquid phase transfer. The molecular basis of the out-of-equilibrium process is reversible covalent modification of nanoparticle-bound ligands by a simple inorganic activator. Activator consumption by a coupled dissipative reaction network leads to autonomous cycling between phases. The out-of-equilibrium lifetime is tunable by adjusting the pH value, and reversible phase cycling is reproducible over several cycles.  相似文献   
22.
Mutations in multi-domain leucine-rich repeat kinase 2 (LRRK2) have been an interest to researchers as these mutations are associated with Parkinson's disease. G2019S mutation in LRRK2 kinase domain leads to the formation of additional hydrogen bonds by S2019 which results in stabilization of the active state of the kinase, thereby increasing kinase activity. Two additional hydrogen bonds of S2019 are reported separately. Here, a mechanistic picture of the formation of additional hydrogen bonds of S2019 with Q1919 (also with E1920) is presented using ‘active’ Roco4 kinase as a homology model and its relationship with the stabilization of the ‘active’ G2019S LRRK2 kinase. A conformational flipping of residue Q1919 was found which helped to form stable hydrogen bond with S2019 and made ‘active’ state more stable in G2019S LRRK2. Two different states were found within the ‘active’ kinase with respect to the conformational change (flipping) in Q1919. Two doubly-mutated systems, G2019S/Q1919A and G2019S/E1920 K, were studied separately to check the effect of Q1919 and E1920. For both cases, the stable S2 state was not formed, leading to a decrease in kinase activity. These results indicate that both the additional hydrogen bonds of S2019 (with Q1919 and E1920) are necessary to stabilize the active G2019S LRRK2.  相似文献   
23.
This study addresses the magnetic interaction between paramagnetic metal ions and the radical ligands taking the [CuII(hfac)2(imVDZ)] and [MII(hfac)2(pyDTDA)] (imVDZ=1,5-dimethyl-3-(1-methyl-2-imidazolyl)-6-oxoverdazyl; hfac=(1,1,1,5,5,5)hexafluroacetylacetonate; pyDTDA=4-(2′-pyridyl)-1,2,3,5-dithiadiazolyl), (M=Cu, Ni, Co, Fe, Mn) compounds as reference systems. The coupling between the metal and ligand spins is quantified in terms of the exchange coupling constant (J) in the platform of density functional theory (DFT) and the wave function-based complete active space self-consistent field (CASSCF) method. Application of DFT and broken symmetry (BS) formalism results ferromagnetic coupling for all the transition metal complexes except the Mn(II) complex. This DFT-BS prediction of magnetic nature matches with the experimental finding for all the complexes other than the Fe(II)-pyDTDA complex, for which an antiferromagnetic coupling between high spin iron and the thiazyl ligand has been reported. However, evaluation of spin state energetics through the multiconfigurational wave function-based method produces the S=3/2 ground spin state for the iron-thiazyl in parity with experiment. Electronic structure analyses find the overlap between the metal- and ligand-based singly occupied molecular orbitals (SOMOs) to be one of the major reasons attributing to different extent of exchange coupling in the systems under investigation.  相似文献   
24.
Unlike cation substitution, anion substitution in inorganic materials such as metal oxides and sulfides would be expected to bring about major changes in the electronic structure and properties. In order to explore this important aspect, we have carried out first‐principles DFT calculations to determine the effects of substitution of P and Cl on the properties of CdS and ZnS in hexagonal and cubic structures and show that a sub‐band of the trivalent phosphorus with strong bonding with the cation appears in the gap just above the valence band, causing a reduction in the gap and enhancement of dielectric properties. Experimentally, it has been possible to substitute P and Cl in hexagonal CdS and ZnS. The doping reduces the band gap significantly as predicted by theory. A similar decrease in the band gap is observed in N and F co‐substituted in cubic ZnS. Such anionic substitution helps to improve hydrogen evolution from CdS semiconductor structures and may give rise to other applications as well.  相似文献   
25.
The present work describes an exciting method for the selective and sensitive determination of calcitonin in human blood serum samples. Adopting the surface molecular imprinting technique, a calcitonin-imprinted polymer was prepared on the surface of the zinc oxide nanostructure. Firstly, a biocompatible tyrosine derivative as a monomer was grafted onto the surface of zinc oxide nanostructure followed by their polymerization on vinyl functionalized electrode surface by activator regenerated by electron transfer–atom transfer radical polymerization (ARGET–ATRP) technique. Such sensor can predict the small change in the concentration of calcitonin in the human body and it may also consider to be as cost-effective, renewable, disposable, and reliable for clinical studies having no such cross-reactivity and matrix effect from real samples. The morphologies and properties of the proposed sensor were characterized by scanning electron microscopy, cyclic voltammetry, difference pulse voltammetry and chronocoulometry. The linear working range was found to be 9.99 ng L−1 to 7.919 mg L−1 and the detection limit as low as 3.09 ± 0.01 ng L−1 (standard deviation for three replicate measurements) (S/N = 3).  相似文献   
26.
Chirality is a property of asymmetry important to both physical and abstract systems. Understanding how molecular systems respond to perturbations in their chiral building blocks can provide insight into diverse areas such as biomolecular self‐assembly, protein folding, drug design, materials, and catalysis. Despite the fundamental importance of stereochemical preorganization in nature and designed materials, the ramifications of replacing chiral centers with stereodynamic atomic mimics in the context of biomolecular systems is unknown. Herein, we demonstrate that replacement of a single amino acid stereocenter with a stereodynamic nitrogen atom has profound consequences on the self‐assembly of a biomolecular system. Our results provide insight into how the fundamental biopolymers of life would behave if their chiral centers were not configurationally stable, highlighting the vital importance of stereochemistry as a pre‐organizing element in biomolecular folding and assembly events.  相似文献   
27.
Developing a material that can combat antibiotic‐resistant bacteria, a major global health threat, is an urgent requirement. To tackle this challenge, we synthesized a multifunctional subphthalocyanine (SubPc) polymer nanosphere that has the ability to target, label, and photoinactivate antibiotic‐resistant bacteria in a single treatment with more than 99 % efficiency, even with a dose as low as 4.2 J cm−2 and a loading concentration of 10 nM . The positively charged nanosphere shell composed of covalently linked SubPc units can increase the local concentration of photosensitizers at therapeutic sites. The nanosphere shows superior performance compared to corresponding monomers presumably because of their enhanced water dispersibility, higher efficiency of singlet‐oxygen generation, and phototoxicity. In addition, this material is useful in fluorescence labeling of living cells and shows promise in photoacoustic imaging of bacteria in vivo.  相似文献   
28.
The generalized pseudospectral method is used to study spherical confinement in two simple Coulombic systems: (i) well celebrated and heavily studied H atom (ii) relatively less explored Hulthén potential. In both instances, arbitrary cavity size as well as low and higher states are considered. Apart from bound state eigenvalues, eigenfunctions, expectation values, quite accurate estimates of the critical cage radius for H atom for all the 55 states corresponding to , are also examined. Some of the latter are better than previously reported values. Degeneracy and energy ordering under the isotropic confinement situation are discussed as well. The method produces consistently high‐quality results for both potentials for small as well as large cavity size. For the H atom, present results are comparable to best theoretical values, while for the latter, this work gives considerably better estimates than all existing work so far. © 2014 Wiley Periodicals, Inc.  相似文献   
29.
The energy landscapes of sub‐nanometre bimetallic coinage metal clusters are explored with the Threshold Algorithm coupled with the Birmingham Cluster Genetic Algorithm. Global and energetically low‐lying minima along with their permutational isomers are located for the Cu${_4 }$ Ag${_4 }$ cluster with the Gupta potential and density functional theory (DFT). Statistical tools are employed to map the connectivity of the energy landscape and the growth of structural basins, while the thermodynamics of interconversion are probed, based on probability flows between minima. Asymmetric statistical weights are found for pathways across dividing states between stable geometries, while basin volumes are observed to grow independently of the depth of the minimum. The DFT landscape is found to exhibit significantly more frustration than that of the Gupta potential, including several open, pseudo‐planar geometries which are energetically competitive with the global minimum. The differences in local minima and their transition barriers between the two levels of theory indicate the importance of explicit electronic structure for even simple, closed shell clusters.  相似文献   
30.
The unusual self‐assembly of {(BMIm)2(DMIm)[PW12O40]}n (n=1100–7500) (BMIm=1‐butyl‐3‐methylimidazolium, DMIm=3,3′‐dimethyl‐1,1′‐diimidazolium) soft oxometalates (SOMs) with controlled size and a hollow nanocavity was exploited for the photochemical synthesis of polymeric nanospheres within the nanocavity of the SOM. The SOM vesicle has been characterized by using several techniques, including dynamic light scattering (DLS), static light scattering (SLS), attenuated total reflection (ATR) IR spectroscopy, Raman spectroscopy, microscopy, and zeta‐potential analysis. The self‐assembly and stabilization of this soft‐oxometalate vesicle has been shown by means of counter‐ion condensation. The immediate implication of such stabilization—the variation of the dielectric constant with the hydrodynamic radius of the vesicle—has been used to synthesize vesicles of controlled size. Such vesicles of varying size have been used as templates for polymerization reactions that produce polymeric spheres of controlled size. Direct evidence shows that the SOM behaves as a model heterogeneous catalytic system. Such surfactant‐ and initiator‐free photochemical synthetic routes for obtaining uniform latex spheres could be used in the making of optical bandgap materials, inverse opals, and paints.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号